Stimulation by alpha-adrenergic agonists of Ca2+ fluxes, mitochondrial oxidation and gluconeogenesis in perfused rat liver.
نویسندگان
چکیده
Glucose output from perfused livers of 48 h-starved rats was stimulated by phenylephrine (2 microM) when lactate, pyruvate, alanine, glycerol, sorbitol, dihydroxyacetone or fructose were used as gluconeogenic precursors. Phenylephrine-induced increases in glucose output were immediately preceded by a transient efflux of Ca2+ and a sustained increase in oxygen uptake. Phenylephrine decreased the perfusate [lactate]/[pyruvate] ratio when sorbitol or glycerol was present, but increased the ratio when alanine, dihydroxyacetone or fructose was present. Phenylephrine induced a rapid increase in the perfusate [beta-hydroxybutyrate]/[acetoacetate] ratio and increased total ketone-body output by 40-50% with all substrates. The oxidation of [1-14C]octanoate or 2-oxo[1-14C]glutarate to 14CO2 was increased by up to 200% by phenylephrine. All responses to phenylephrine infusion were diminished after depletion of the hepatic alpha-agonist-sensitive pool of Ca2+ and returned toward maximal responses after Ca2+ re-addition. Phenylephrine-induced increases in glucose output from lactate, sorbitol and glycerol were inhibited by the transaminase inhibitor amino-oxyacetate by 95%, 75% and 66% respectively. Data presented suggest that the mobilization of an intracellular pool of Ca2+ is involved in the activation of gluconeogenesis by alpha-adrenergic agonists in perfused rat liver. alpha-Adrenergic activation of gluconeogenesis is apparently accompanied by increases in fatty acid oxidation and tricarboxylic acid-cycle flux. An enhanced transfer of reducing equivalents from the cytoplasmic to the mitochondrial compartment may also be involved in the stimulation of glucose output from the relatively reduced substrates glycerol and sorbitol and may arise principally from an increased flux through the malate-aspartate shuttle.
منابع مشابه
The contribution of both extracellular and intracellular calcium to the action of alpha-adrenergic agonists in perfused rat liver.
The role of both intracellular and extracellular Ca2+ pools in the expression of alpha-adrenergic-agonist-mediated responses was examined in perfused rat liver. Responses studied included glycogenolysis, respiration, lactate and pyruvate formation, ketone-body production, changes in the cytoplasmic and mitochondrial redox ratio and cellular K+ fluxes. Each of these was shown to be dependent on ...
متن کاملPhosphatidic acid and arachidonic acid each interact synergistically with glucagon to stimulate Ca2+ influx in the perfused rat liver.
The administration of phosphatidic acid to rat livers perfused with media containing either 1.3 mM- or 10 microM-Ca2+ was followed by a stimulation of Ca2+ efflux, O2 uptake and glucose output. The responses elicited by 100 microM-phosphatidic acid were similar to those induced by the alpha-adrenergic agonist phenylephrine. Contrary to suggestions that phosphatidic acid acts like a Ca2+-ionopho...
متن کاملStudies on alpha-adrenergic-induced respiration and glycogenolysis in perfused rat liver.
Phenylephrine (1.5 x 10(-6) M) administered to perfused livers from fed rats gave rise to a rapid, parallel increase in oxygen uptake and glucose output. The time of onset for oxygen uptake was 9.9 +/- 0.4 s following phenylephrine administration, and immediately preceded glucose output which occurred at 11.6 +/- 0.5 s. Near-maximal effects were observed 50 s following alpha-agonist treatment. ...
متن کاملEffect of phenylephrine on glutamate and glutamine metabolism in isolated perfused rat liver.
Addition of phenylephrine to isolated perfused rat liver is followed by an increased 14CO2 production from [1-14C]glutamate, [1-14C]glutamine, [U-14C]proline and [3-14C]pyruvate, but by a decreased 14CO2 production from [1-14C]pyruvate. Simultaneously, there is a considerable decrease in tissue content of 2-oxoglutarate, glutamate and citrate. Stimulation of 14CO2 production from [1-14C]glutama...
متن کاملPartial Resistance to Peroxisome Proliferator–Activated Receptor-α Agonists in ZDF Rats Is Associated With Defective Hepatic Mitochondrial Metabolism
OBJECTIVE Fluxes through mitochondrial pathways are defective in insulin-resistant skeletal muscle, but it is unclear whether similar mitochondrial defects play a role in the liver during insulin resistance and/or diabetes. The purpose of this study is to determine whether abnormal mitochondrial metabolism plays a role in the dysregulation of both hepatic fat and glucose metabolism during diabe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 212 3 شماره
صفحات -
تاریخ انتشار 1983